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ABSTRACT 

 

 The aim of this study is to apply the principal component analysis in solving 

the problem of multicollinearity for sesame production of Myanmar (1995-2020) with 

five explanatory variables which are sown acreage, harvested acreage, area of crops 

under irrigation, agricultural loan and quality seeds. The situations of these 

explanatory variables were described by using descriptive statistics. According to the 

correlation matrix of explanatory variables, it was found that these are highly 

correlated themselves. Since the symptoms of collinearity occur between sown 

acreage and harvested acreage. Thus, principal component analysis was applied to 

overcome multicollinearity problem. It was found that the two principal components. 

The first component consisted of sown acreage and harvested acreage, then quality 

seeds, agricultural loan and irrigation were included in the second component. 

According to the results of sesame production after removal of multicollinearity, sown 

acreage and harvested acreage are positively effect on sesame production and the 

explanatory variables can explain 84.2 % of variation in sesame production of 

Myanmar. 
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CHAPTER I 

INTRODUCTION 

 

 Among all statistical tools, multiple regression analysis is one of the most 

frequently employed. According to Myers (1990), regression analysis refers to a 

statistical technique for studying the relationship among variables and influence of 

one variable over the others. Thus the multiple linear regression model is a statistical 

technique which is applicable when someone needs to study the relationship between 

dependent variable and at least two independent variables. The link between several 

independent or predictor variables and one dependent or criterion variable is typically 

explained using the multiple regression analysis. A more complex model, containing 

additional independent variables, typically is more helpful in providing precise 

predictions of the response variable. Because it requires two or more predictor 

variables, multiple linear regression is also known as multiple regression. 

 

1.1 Rationale of the Study 

According to International Journal of Statistics and Applications (2018), when 

one of the independent variables is linearly correlated with one or more of the other 

independent variables, a multicollinearity problem occurs. One of the prerequisites for 

numerous regressions is broken in such a circumstance. There is a correlation between 

two or more independent variables in multiple linear regression analysis since there 

are numerous independent variables. The independent variable that correlates with 

each other is called multicollinearity (Zhou and Huang, 2018). Specifically, 

multicollinearity occurs if there is a high correlation between two independent 

variables, Xi and Xj. If the correlation coefficient rij between Xi and Xj in the multiple 

regression model is high, multicollinearity exists. Any time two or more independent 

variables are linearly related, some degree of multicollinearity exists. 

Willis and Perlack (1978) investigated the multicollinearity is one of several 

problems confronting researchers using regression analysis. This study examines the 

regression model when the assumption of independence among the independent 

variables is violated. The basic properties of the least squares approach are examined, 

the concept of multicollinearity and its consequences on the least squares estimators 
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are explained. The detection of multicollinearity and alternatives for handling the 

problem are then discussed.  

 The presence of multicollinearity creates many problems in use of multiple 

regression model. The most direct way of testing for multicollinearity is to produce a 

correlation matrix for all variables in the model. Another way to detect 

multicollinearity is to use the value of Tolerance. If the value of Tolerance is not less 

than 0.1, it can be said that there is no multicollinearity problem in this study.  

The next way to detect multicollinearity is using the variance inflation factor 

(VIF). VIF measures the severity of multicollinearity in the regression analysis. VIF is 

another commonly used tool to detect whether multicollinearity exists in a regression 

model. If the VIF values are less than 10, so there is no multicollinearity (Alauddin 

and Nghiemb, 2010). 

 In any case, it is important to understand that most regression models with two 

or more independent variables exhibit some degree of multicollinearity. Because 

multicollinearity poses a significant challenge when attempting to draw conclusions 

for predictive models. Therefore, it is crucial that discover a better approach to handle 

multicollinearity. The main objective in this study is to introduce different models of 

principal component regression to solve multicollinearity problem. 

 In this study, sesame production data of Myanmar was used to explore the 

multicollinearity problem and the nature of independent variables. To detect 

multicollinearity assumption, the sesame production of Myanmar from 1995 to 2020 

with five explanatory variables (sown acreage, harvested acreage, area of crops under 

irrigation, agricultural loan and quality seeds) were used to estimate. If there has 

multicollinearity problem in sesame production of Myanmar, principal component 

analysis are applied to solve this problem because of the principal component 

regression is suitable method for the multicollinearity problem. 

 

1.2 Objectives of the Study 

The objectives of the study are: 

(i) To study the situation of sesame production in Myanmar. 

(ii) To apply the principal component analysis to solve the multicollinearity 

problem in sesame production of Myanmar. 
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1.3 Method of Study 

In this study descriptive analysis was used to explore information about the 

sesame production with five explanatory variables (sown acreage, harvested acreage, 

area of crops under irrigation, agricultural loan and quality seeds). And then, the 

effect of multicollinearity has been removed from the estimate of the regression 

coefficients by using principal component analysis are employed. 

 

1.4 Scope and Limitations of the Study 

 In this study, the sesame production in Myanmar is analyzed by using 

principle component analysis based on the secondary data from the Statistical 

Yearbooks and Myanmar Agricultural Statistics. The study period is from year 1995 

to year 2020. 

 

1.5 Organization of the Study 

 This study is divided into five chapters. Chapter I consists of the introduction, 

rationale of the study, objectives of the study, method of study, scope and limitations 

of the study and organization of the study. Chapter II is the literature review. The 

theoretical background of multicollinearity, principal component analysis and 

multiple linear regression is described in Chapter III. Chapter IV presents the data 

analysis for production of sesame cultivated in Myanmar. Chapter V includes the 

conclusion of the study. 
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CHAPTER II 

LITERATURE REVIEW 

  

 The researchers are used special terms that help describe these activities, when 

researchers are manipulating an environmental condition to determine its effect on 

behavior. A variable is any condition that can vary or change in quantity or quality. 

The independent variable, or treatment, is under the control and administered by the 

experimenter. The behavior that is potentially affected by the treatment and that it 

measure is called the dependent variable. The dependent variable is always a measure 

of behavior that it record after first manipulating the independent variable. It is 

referred to as dependent because changes in it depend on the effects of the 

independent variable. If a systematic relationship is found between the independent 

and dependent variables, then have established an empirical or causal relationship. It 

is also sometimes called a functional relationship because changes in the dependent 

variable are a function of values (different amounts) of the independent variable. 

From these lawful or functional relationships, it can construct theories and make 

predictions regarding future behavior. As discuss independent and dependent 

variables, will notice that they are always defined in precise and measurable terms.  

 Kaur (2013) studied variable is a term frequently used in research projects. It 

is pertinent to define and identify the variables while designing quantitative research 

projects. A variable incites excitement in any research than constants. It is therefore 

critical for beginners in research to have clarity about this term and the related 

concepts. Variable to put in layman statement is something that can change and or can 

have more than one value. It is pertinent for a researcher to know as how certain 

variables within a study are related to each other. It is thus important to define the 

variables to facilitate accurate explanation of the relationship between the variables. 

There is no limit to the number of variables that can be measured, although the more 

variables, the more complex the study and the more complex the statistical analysis. 

Moreover the longer the list of variables, the longer the time required for data 

collection. 

Alibuhtto and Peiris (2015) focused on investigating the multicollinearity 

often causes a huge explanatory problem in multiple linear regression analysis. In 

presence of multicollinearity the (OLS) estimators are inaccurately estimated. The 
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multicollinearity was detected by using observing correlation matrix, variance 

influence factor (VIF), and eigenvalues of the correlation matrix. The simulation 

multicollinearity data were generated using MINITAB software and make comparison 

between methods of principal component regression (PCR) and the OLS methods. 

According to the results of this study, it was found that PCR method facilitates to 

solve the multicollinearity problem. 

Ayinde, Alabi and Nwosu (2021) presented the multicollinearity has remained 

a major problem in regression analysis and should be sustainably addressed. Problems 

associated with multicollinearity are worse when it occurs at high level among 

regressors. This review revealed that studies on the subject have focused on 

developing estimators regardless of effect of differences in levels of multicollinearity 

among regressors. In this studies have considered single-estimator and combined-

estimator approaches without sustainable solution to multicollinearity problems. The 

possible influence of partitioning the regressors according to multicollinearity levels 

and extracting from each group to develop estimators that will estimate the parameters 

of a linear regression model when multicollinearity occurs is a new econometrics idea 

and therefore requires attention. The results of new studies should be compared with 

existing methods namely principal components estimator, partial least squares 

estimator, ridge regression estimator and the ordinary least squares estimators using 

wide range of criteria by ranking their performances at each level of multicollinearity 

parameter and sample size. Based on a recent clue in literature, it is possible to 

develop innovative estimator that will sustainably solve the problem of 

multicollinearity through partitioning and extraction of explanatory variables 

approaches and identify situations where the innovative estimator will produce most 

efficient result of the model parameters. The new estimator should be applied to real 

data and popularized for use. 

Ghorbani (2020) investigated on the multicollinearity is a common problem in 

linear regression models when two or more regressors are highly correlated, which 

yields some serious problems for the ordinary least square estimates of the parameters 

as well as model validation and interpretation. In this paper, the problem of 

multicollinearity and its subsequent effects on the linear regression along with some 

important measures for detecting multicollinearity is reviewed, then the role of 

eigenvalues and eigenvectors in detecting multicollinearity are presented. At the end a 
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real data set is evaluated for which the fitted linear regression model is investigated 

for multicollinearity diagnostics. 

Perez (2017) studied the multiple linear regression models, covariates are 

sometimes correlated with one another. Multicollinearity can cause parameter 

estimates to be inaccurate, among many other statistical analysis problems. When 

these problems arise, there are various remedial measures it can take. Principal 

component analysis is one of these measures, and uses the manipulation and 

analyzation of data matrices to reduce covariate dimensions, while maximizing the 

amount of variation. 

Mason and Perreault (1991) defined multiple regression analysis is one of the 

most widely used statistical procedures for both scholarly and applied marketing 

research. Yet, correlated predictor variables and potential collinearity effects are a 

common concern in interpretation of regression estimates. Though the literature on 

ways of coping with collinearity is extensive, relatively little effort has been made to 

clarify the conditions under which collineariy affects estimates developed with 

multiple regression analysis or how pronounced those effects are. The authors report 

research designed to address these issues. The results show, in many situations typical 

of published cross-sectional marketing research, that fears about the harmful effects of 

collinear predictors often are exaggerated.  

Vatcheva and Rahbar (2016) investigated the adverse impact of ignoring 

multicollinearity on findings and data interpretation in regression analysis. The failure 

to identify and report multicollinearity could result in misleading interpretations of the 

results. We used simulated datasets and real life data from the Cameron County 

Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the 

regression analysis and encourage researchers to consider the diagnostic for 

multicollinearity as one of the steps in regression analysis. 

Joshi (2012) presented regression modeling is one of the most widely used 

statistical techniques in clinical trials. For instance, the model may fit the data well, 

even though none of the predictors has a statistically significant impact on explaining 

the outcome variable. This happens when multicollinearity exists between two or 

more predictor variables. If the problem of multicollinearity is not addressed properly, 

it can have a significant impact on the quality and stability of the fitted regression 

model. The aim of this thesis is to explain the issue of multicollinearity, effects of 
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multicollinearity, various techniques to detect multicollinearity and the remedial 

measures one should take to deal with it. 

Abdi and Williams (2010) investigated the most scientific areas employ 

Principal Component Analysis (PCA), which is arguably the most well-liked 

multivariate statistical method. It is also most likely the earliest multivariate method. 

When applied effectively, Principal Component Regression (PCR), a technique for 

overcoming multicollinearity, produces better estimation and prediction than 

conventional least squares. Principal components of the correlation matrix are a new 

set of orthogonal or uncorrelated variables created using this method from the original 

k climatic variables. Following this transformation, some of the principal components 

are eliminated in order to reduce variance. The new orthogonal variables are then 

ranked according to their significance. Ordinary least squares are used to perform a 

multiple regression analysis of the response variable against the smaller set of 

principal components after some of the principal components have been eliminated 

(OLS). After calculating the regression coefficients for the smaller set of orthogonal 

variables, a new set of coefficients that correspond to the original or starting set of 

correlated variables is created mathematically from the reduced set of coefficients. 

These new coefficients are principal component estimators. 

The independent variable is the antecedent while the dependent variable is the 

consequent. If the independent variable is an active variable then we manipulate the 

values of the variable to study its effect on another variable. When the explore 

completely new areas, little information is available to provide guidelines in selecting 

the independent variable. When dealing with quantitative independent variables, will 

faced with the additional problem of selecting appropriate values of the variable. This 

decision is important because too low a dosage may be insufficient to produce an 

effect, whereas too much may be harmful or even lethal. In fact, most researchers 

choose what they consider proper values of a treatment condition based on their own 

experiments and the published experiments of others. Some obvious guidelines should 

be considered when choosing values of an independent variable. A minimum of two 

groups is necessary to determine whether the independent variable has an effect. One 

of these groups would receive the treatment (experimental group), and the other group 

would either not receive the treatment (control group) or receive a different level of 

the treatment. If use more than two groups in an effort to ascertain whether increasing 

levels of the independent variable systematically influence behavior, the choice of 
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values for the independent variable requires more thought. To counter this risk, the 

first thought that often comes to mind is to select extreme values of the independent 

variable. The logic is straight forward and simple. The greater difference in value 

between the experimental conditions, the greater the probability of showing that the 

independent variable has an effect. Therefore, choose two points along the continuum 

that are extreme values. Under certain circumstances, the logic is good and would 

provide an efficient way of determining whether the independent variable is powerful 

and worthy of additional investigation. Unfortunately, this simple logic could also 

result in coming to a wrong conclusion, depending on the relationship between the 

independent and dependent variable. Dependent variable is the variable that is 

affected by the independent variable. The dependent variable is dependent on the 

independent variable. The selection of a dependent variable is not in the least a casual 

matter. Indeed, it is immensely important. It reflects our underlying assumption that 

the study of behavior is the doorway toward measuring psychological states. 

Moreover, it is the measure use to ascertain whether the independent variable has an 

effect. Generally, choose a dependent measure because we judge that it will reveal 

unobservable but inferable processes that affect it and other behavioral measures. 

Often assume that our dependent variable reflects some underlying psychological 

state.  

Although the main irrigation infrastructure has been completed, distribution 

canals and water courses to farmers’ field are still under construction. Renovation of 

the distribution canals of completed dams and reservoirs has also been delayed due to 

limited maintenance budget. Extension and education activities on efficient utilization 

of irrigation water by water users are also inefficient due to suboptimal on-farm 

research and demonstration. There is a great potential for the expansion of irrigated 

areas by improving irrigation efficiency (FAO, 2016). 

In such situations water use is highly inefficient and relatively few farmers 

benefit. According to Favre and Myint (2009), about 16% of Myanmar’s cultivated 

area is sown with oilseeds, the third most important crop group in the country after 

cereals and pulses. Cultivation of pulses overtook oilseeds soon after the liberalization 

of the pulses trade. Important variations on production in main producing countries 

are because of the heavy dependence of rainfall for sesame crops. Myanmar’s water 

resources are considerable and are centered on four major rivers and their related 
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systems by Raitzer and Wong (2015). And then, less than 10 percent of the total water 

resources are utilized annually.  

FAO (2016) presented that there is some involvement of the private sector in 

seed production, but this is still relatively limited. In addition, the monitoring of the 

health status and quality of certified seed, even for rice, does not comply with 

required technical standards. Farmers might not use certified seed because there is no 

incentive to do so. It is always assumed that the issue is supply: just produce more 

seeds and farmers will buy them. But seed availability without fertilizer, water, plant 

protection or a market is not enough to attract a farmer. The MOAI is responsible for 

all aspects of agriculture and irrigation as well as water resources with its mission to 

develop agriculture and irrigation nationally. At the state/regional level, agriculture is 

organized under a state/regional minister for agriculture who reports directly to the 

MOAI at the Union level in Nay Pyi Taw where most budget decisions are currently 

made. The main objective of the MOAI is stated as being to increase crop production. 

Among several strategies identified by the MOAI for meeting agriculture sector 

objectives are: the provision of irrigation, the application of modern agrotechnologies 

including improved seed, fertilizer and crop protection, the development and 

utilization of new crop varieties, and the development of new agricultural land.  

In this study, the conceptual framework is illustrated to find the 

multicollinearity problem of sesame production in Myanmar. Thus, the dependent 

variable is the production (PROD) (in thousand ton). The explanatory variables that 

can be influenced on the dependent variable are sown acreage (SOWN) (in thousand 

acre), harvested acreage (HAR) (in thousand acre), area of crops under irrigation 

(IRRI) (in thousand acre), agricultural loan (LOAN) (in kyat millions) and quality 

seeds (QTY) (basket). 
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Explanatory Variables   Dependent Variable 

   Sown acreage 

   Harvested acreage 

   Irrigation Area 

   Agricultural loan 

   Quality seeds 

Source: Own compilation 

Figure (2.1) Conceptual Framework for Sesame Production of Myanmar 

The variables used in this study are defined as follows: 

Crop production is the process of growing crops for domestic and commercial 

purposes. Some of the crops produced on a large scale include rice, wheat, maize, 

sesame, etc.  

Sown acreage is plowed in order to grow a crop and according to the method 

of planting, if the seed is put into the ground or if it is a crop grown as a seedling or 

after the seedlings are taken from the nursery and transplanted into the plantation, 

these areas are called the sown area. 

Harvested acreage is a subset of total agricultural acreage that does not include 

planted acreage that is not harvested.  

The irrigated area is assumed to be irrigated for cultivation through such 

sources as canals (government & private), tanks, tube-wells, other wells and other 

sources. It is divided into two categories: (i) net irrigated area and (ii) total net un-

irrigated area. 

Agricultural loan means a loan made by a lending institution or by the 

authority to any person for the purpose of financing or refinancing land acquisition or 

improvement, irrigation, fertilizers, pesticides, machinery, containers or supplies or 

any other products employed in the production, cultivation, harvesting, marketing, 

distribution or export of agricultural products.  

The use of quality seeds are considered as an important factor for increasing 

crop production. Quality seed is defined as varietally pure with a high germination 

percentage, free from disease and disease organisms and with a proper moisture 

content and weight. The use of quality seeds helps greatly in higher production per 

unit area to attain security of the country. Quality seeds have the ability of efficient 

utilization of the inputs such as fertilizers and irrigation. 

 

Production 
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CHAPTER III 

METHODOLOGY 

 

 In this chapter, multiple linear regression model, multicollinearity and its 

effects and principal component analysis are the main presented. 

  

3.1 Multiple Linear Regression Model 

 When two or more independent variables are to be utilized to estimate the 

dependent variable, multiple regression analysis is a technique for accounting for the 

relationship between all the variables at once. Extensions of the fundamental concepts 

used in two-variable regression analysis are applied in regression analysis with two or 

more independent variables. For the average relationship between the variables, an 

equation must be found. 

 In the linear equation that represents the multiple regressions model is 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +…+ 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖              (3.1) 

where  𝑌𝑖  = value of the dependent variable in the ith trial or observation 

β0 = constant in the regression equation, which indicates the value of Y 

when all Xik = 0 

β1,…,βk= regression coefficients associated with each of the Xk independent 

variable 

Xij = value of the jth independent variable in the ith trial or observation, 

associated with the process of sampling 

εi = the random error in the ith trial or observation, associate with the 

process of sampling, is assumed that normally distributed (𝜀𝑖 ∼ N (0, 𝜎2). 

Equation (3.1) can be written in matrix form 

  Y = X 𝛽 + 𝜀               

  The least squares estimator 𝛽̂ = (𝛽̂0, 𝛽̂1, 𝛽̂2, … , 𝛽̂𝑘) of the regression 

coefficients for the independent variable is 

   𝛽̂ = (𝑋′ 𝑋)-1 𝑋′𝑦 

and it’s variance is 

   V(𝛽̂) = (𝑋′ 𝑋)-1 𝜎2 

  Each column of X represents measurements for a particular independent 

variables. 
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3.1.1 The Standard Error of the Estimate 

 The standard error of the estimate, Se, is found much as it was in the case of 

simple regression. The mean square error (MSE) is found by dividing the sum of the 

squared errors (SSE) by the degrees of freedom. 

MSE = 
∑(𝑌𝑖−𝑌̂)2

𝑛−𝑘−1
 

Then, 

  Se = √
∑(𝑌𝑖−𝑌̂)2

𝑛−𝑘−1
 

 This formula require that the predicted value of Y (𝑌̂) be calculated for every 

observation. The error, the difference between this predicted value and the observed Y 

value (Yi), is then squared and summed for all observation. 

 

3.1.2 Evaluating the Model as a Whole 

 A multiple regression model can be evaluated using a number of tests. 

Calculate and interpret the standard error of the estimate for this study, analyze the 

model as a whole using ANOVA and the F-test, and assess the role of each 

independent variable using t-tests. 

 The overall F-test is used to test for the significance of overall multiple 

regression model. The ANOVA procedure tests the null hypothesis that all the β 

values are zero against the alternative that at least one β is not zero. The multiple 

regression models is defined as 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +…+ 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖 

 The hypothesis for F-test takes the following form 

Null Hypothesis  : 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘  = 0 

There is no linear relationship between the dependent 

variable and the independent variables. 

Alternative Hypothesis : At least one 𝛽𝑗 ≠ 0 

There is a linear relationship between the dependent 

variable and at least one of the independent variables. 

 If the null hypothesis is rejected, it can be concluded that one or more of the 

parameters in the model is not equal to zero. Thus, the overall relationship between 

the dependent variable Y and the independent variables X1, X2, … , Xk is significant. 

However, if the null hypothesis is not rejected, its concluded that there is an overall 
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significant relationship and the regression does not significantly to explain the 

variation in the independent variable. 

 This ratio of mean square regression to mean square error follows the F-

distribution when the assumption that the residual are normally distributed is valid 

and the null hypothesis is true. The ratio of F-statistic; 

  F = 
MSR

MSE
 

where; the MSR is the mean square due to the regression which is equal to 

  MSR = 
SSR

k
 

where; the MSE is the mean square of error which is equal to 

  MSE = 
SSE

n−k−1
 

where; n-k-1 is the residual degrees of freedom and k is the number of independent 

variables. The decision rule for the F-test takes the following form; 

 Reject the null hypothesis  if : F > Fα,k,n−k−1 

 Do not reject the null hypothesis if : F ≤ Fα,k,n−k−1 

where; Fα,k,n−k−1 is based on the F distribution with k degrees of freedom in the 

numerator, n-k-1 degrees of freedom in the denominator and the probability of 𝛼 in 

the upper-tail of the probability distribution. 

 

3.1.3 Testing Individual Partial Regression Coefficient 𝜷𝒋 

 An individual partial regression coefficient, 𝛽𝑗 in the multiple regression 

model is tested to determine the significance of the relationship between x i’s and y. 

For any parameter 𝛽𝑗 the hypothesis take the form. 

Null Hypothesis  : 𝛽𝑗 = 0 

Alternative Hypothesis : 𝛽𝑗 ≠ 0 

 The t statistic for 𝛽̂𝑗  is simple to compute given 𝛽̂𝑗 and its standard error: 

  t = 
𝛽̂𝑗

𝑠𝑒(𝛽̂𝑗)
 

 The decision rule for this test takes the following form: 

Reject the null hypothesis  if : |t| > tα
2⁄ ,n−k−1 

Do not reject the null hypothesis if : |t| ≤ tα
2⁄ ,n−k−1 
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3.1.4 The Coefficient of Multiple Determination R2 

 The coefficient of multiple determinations is defined as: 

  R2 = 
∑(Ŷi−Y̅)2

∑(Yi−Y̅)2
 = 1- 

∑(Ŷi−Y̅)2

∑(Yi−Y̅)2
 

 The numerator of the middle term is the explained sum of squares or the sum 

of squares due to regression, SSR, as it is sometimes called. The denominator is the 

total sum of squares SST. 

 Therefore, it can be written as: 

  R2 = 
SSR

SST
 

 The coefficient of multiple determination demonstrates the percentage of Y's 

overall variability that can be accounted for by the independent variables. These are 

the percentages of the dependent variable's overall variation that the explanatory 

variables can account for. The value of R2 will be between zero and one, where R2 = 

0, the regression model cannot explain anything about the variation in the dependent 

variable or the estimated model does not fit the data. The case of R2 = 1 represents a 

perfect fit of the estimated model of the data. A high value of R2 shows good fit and a 

low value of R2 shows a poor fit. 

 

3.1.5 The Adjusted Coefficient of Multiple Determination (𝑹̅𝟐) 

 A measure that recognized the number of independent variables in the 

regression model is called the adjusted coefficient of multiple determinations and is 

denoted by 𝑅̅2. 

  R̅2 = 

∑(𝑌i−Ŷ)2

(n−k−1)

∑(Yi−Y̅)2

(n−1)

 

 Reporting the adjusted R2 is extremely important in comparing two or more 

regression models that predict the same dependent variable but have a different 

number of independent variables. 
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3.1.6 Residual Analysis 

 The Durbin-Watson statistic is used to test the hypothesis of no 

autocorrelation between error terms. 

 Null hypothesis  : 𝜌𝑒𝑡 ,𝑒𝑡−1
 = 0 

 There is no autocorrelation. 

 Alternative hypothesis : 𝜌𝑒𝑡 ,𝑒𝑡−1
 ≠ 0 

 There is an autocorrelation. 

 It can be calculated 

   d = 
∑(𝑒𝑡−𝑒𝑡−1)2

∑(𝑒𝑡)2
 

 As a general rule, if d is close to 2, assume that autocorrelation is not a 

problem. 

 

3.2 Multicollinearity and Its Effects 

 Gujarati (2004), presented the multicollinearity is a statistical phenomenon in 

which there exists a perfect or exact relationship between the predictor variables. 

When there is a perfect or exact relationship between the predictor variables, it is 

difficult to come up with reliable estimates of their individual coefficients. It will 

result in incorrect conclusions about the relationship between outcome variable and 

predictor variables.  

 A number of different techniques for solving the multicollinearity problem 

have been developed. These range from simple methods based on principal 

components to more specialized techniques for regularization, (Naes and Indahl, 

1998). 

 

3.2.1 The Nature of Multicollinearity 

 Gujarati (2009) presented the multicollinearity refers to the existence of more 

than one exact linear relationships and collinearity refers to existence of a single 

linear relationship. But this distinction is rarely maintained in practice and 

multicollinearity refers to both cases. That is it meant the existence of a “perfect,” or 

exact, linear relationship among some or all explanatory variables of a regression 

model. For the k-variable regression involving explanatory variables X1, X2,…, Xk 

(where X1 = 1 for all observations to allow for the intercept  term), an exact linear 

relationship is said to exist if the following condition is satisfied. 
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λ1X1+ λ2X2 + · · ·+λk Xk = 0  (3.2) 

where λ1, λ2, . . . , λk are constants such that not all of them are zero simultaneously. 

Assume that λ2 ≠ 0 Equation (3.2) can be written as 

  X2i = − 
λ1

λ2
X1i−

λ3

λ2
 X3i  −⋯−

λk

λ2
 Xki                               (3.3) 

Which shows how X2 is exactly linearly related to other variables or how it 

can be derived from a linear combination of other X variables. In this situation, the 

coefficient of correlation between the variable X2 and the linear combination on the 

right side of Equation (3.3) is bound to be unity. 

 Similarly, an imperfect linear relationship is said that X variables are 

intercorrelated but not perfectly, so, as follows: 

  λ1X1 + λ2X2 + · · ·+λk Xk + vi = 0              (3.4) 

Where vi is a stochastic error term.  

 If λ2 ≠ 0 Equation (3.4) can be written as 

  X2i = − 
λ1

λ2
 X1i −

λ3

λ2
  X3i  −⋯−

λk

λ2
  Xki  −

1

λ2
 vi                   (3.5) 

 Which shows that X2 is not an exact linear combination of the other X’s 

because it is also determined by the stochastic error term vi. 

 

3.2.2 Estimation in the Presence of Perfect Multicollinearity 

 It was said that the regression coefficients remain indeterminate and their 

standard errors are limitless in the case of perfect multicollinearity. The absence of 

multicollinearity among the regressors included in the regression model is one of the 

assumptions made by the Classical Linear Regression Model (CLRM), (Gujarati, 

1995). If three variables regression model is as follows: 

𝑦𝑖 = 𝛽̂2 𝑥2𝑖 + 𝛽̂3 𝑥3𝑖 + 𝑢̂𝑖                     (3.6) 

where y is the dependent variable, x2 and x3 are the explanatory variables (or 

regressors), u is the stochastic disturbance term and i is the ith observation. The 

coefficients β2 and β3 are called the partial regression coefficients. 

Using the deviation form, where all the variables are expressed as deviations 

from their sample means, it can express as 

𝑦𝑖 = 𝛽̂2𝑥2𝑖 + 𝛽̂3𝑥3𝑖 + 𝑢̂𝑖               (3.7)
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where, yi  = 

[
 
 
 
 
 
𝑦1

𝑦2

.

.

.
𝑦𝑛]

 
 
 
 
 

 , X = 

[
 
 
 
 
 
 𝑥21  𝑥31

 𝑥22  𝑥32

.       .

.       .

.       .
 𝑥2𝑛  𝑥3𝑛]

 
 
 
 
 

  , 𝛽̂= [
𝛽̂2

𝛽̂3

]  , ui = 

[
 
 
 
 
 
𝑢1 
𝑢2 
.
.
.

𝑢𝑛 ]
 
 
 
 
 

 

 

 By using the Ordinary Least Squares (OLS) method, the parameter β can be 

estimated as follows:  

 

 𝛽̂ = (𝑥′ 𝑥)-1 𝑥′𝑦 

 (𝑥′ 𝑥) = [
𝑥21 𝑥22  ………𝑥2𝑛

 𝑥31  𝑥32 …… …𝑥3𝑛 
] 

[
 
 
 
 
 
 𝑥21  𝑥31

 𝑥22  𝑥32

.       .

.       .

.       .
 𝑥2𝑛  𝑥3𝑛]

 
 
 
 
 

 = [
∑𝑥2𝑖

2       ∑ 𝑥2𝑖 𝑥3𝑖

∑ 𝑥2𝑖 𝑥3𝑖      ∑𝑥3𝑖
2 ] 

 (𝑥′ 𝑥)-1 = 
1

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )−(∑𝑥2𝑖 𝑥3𝑖)2
  [

∑𝑥3𝑖
2          − ∑ 𝑥2𝑖  𝑥3𝑖

−∑𝑥2𝑖  𝑥3𝑖        ∑𝑥2𝑖
2

 

] 

 (𝑥′𝑦) = [
𝑥21 𝑥22  ………𝑥2𝑛

 𝑥31  𝑥32 ………𝑥3𝑛 
] 

[
 
 
 
 
 
𝑦1

𝑦2

.

.

.
𝑦𝑛]

 
 
 
 
 

  = [
  ∑ 𝑦𝑖𝑥2𝑖

∑𝑦𝑖𝑥3𝑖
] 

 

 𝛽̂ = (𝑥′ 𝑥)-1 𝑥′𝑦 

 

 𝛽̂ = 
1

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )−(∑𝑥2𝑖 𝑥3𝑖)2
  [

∑𝑥3𝑖
2          − ∑ 𝑥2𝑖  𝑥3𝑖

−∑𝑥2𝑖  𝑥3𝑖        ∑𝑥2𝑖
2

 

] [
  ∑ 𝑦𝑖𝑥2𝑖

∑𝑦𝑖𝑥3𝑖
] 

 

 𝛽̂ = [
𝛽̂2

𝛽̂3

] = [

(∑𝑥3𝑖
2 ) (∑𝑦𝑖𝑥2𝑖)−(∑𝑦𝑖𝑥3𝑖)(∑𝑥2𝑖 𝑥3𝑖)

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )− (∑𝑥2𝑖 𝑥3𝑖)2

(∑𝑥2𝑖
2 )(∑𝑦𝑖𝑥3𝑖)−(∑𝑦𝑖𝑥2𝑖)(∑𝑦𝑖𝑥3𝑖)

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )− (∑𝑥2𝑖 𝑥3𝑖)2

] 

 

 ⸫ 𝛽̂2 = 
∑𝑥3𝑖

2  (∑𝑦𝑖𝑥2𝑖)−(∑𝑦𝑖𝑥3𝑖)(∑𝑥2𝑖 𝑥3𝑖)

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )− (∑𝑥2𝑖 𝑥3𝑖)2
             (3.8) 
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 ⸫ 𝛽̂3 = 
(∑𝑥2𝑖

2 )(∑𝑦𝑖𝑥3𝑖)−(∑𝑦𝑖𝑥2𝑖)(∑𝑦𝑖𝑥3𝑖)

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )− (∑𝑥2𝑖 𝑥3𝑖)2
             (3.9) 

 

 Assume that 𝑥3𝑖 =  𝜆 𝑥2𝑖 , where 𝜆 is a nonzero constant substituting this into 

Equation (3.8), the estimator can be obtained as: 

 

 ⸫ 2̂ = 
 (∑𝑦𝑖𝑥2𝑖)( 𝜆

2 ∑𝑥2𝑖
2 )−(𝜆∑𝑦𝑖𝑥2𝑖)(𝜆∑𝑥2𝑖

2 )

(∑𝑥2𝑖
2 )(𝜆2 ∑𝑥2𝑖

2 )− 𝜆2(∑𝑥2𝑖
2 )

2  = 
0

0
                   (3.10) 

 

Similarly, Equation (3.9) becomes 

 ⸫ 3̂ = 
(𝜆 ∑𝑦𝑖𝑥2𝑖)(∑𝑥2𝑖

2 )−(∑𝑦𝑖𝑥2𝑖)(𝜆∑𝑦𝑖𝑥2𝑖)

(∑𝑥2𝑖
2 )(𝜆2 ∑𝑥2𝑖

2 )− 𝜆2(∑𝑥2𝑖
2 )

2  = 
0

0
                   (3.11) 

which is an indeterminate expression. 

 The variance of 𝛽̂ is   

   )ˆ(V  = (𝑥′ 𝑥)-1 𝜎2  

  )ˆ(V = 
𝜎2

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )−(∑𝑥2𝑖 𝑥3𝑖)2
  [

∑𝑥3𝑖
2          − ∑ 𝑥2𝑖  𝑥3𝑖

−∑ 𝑥2𝑖  𝑥3𝑖         ∑𝑥2𝑖
2

 

] 

 

   )ˆ( 2V = [
𝜎2∑𝑥3𝑖

2  

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )−(∑𝑥2𝑖 𝑥3𝑖)2
]           (3.12) 

 

   )ˆ( 3V = [
𝜎2∑𝑥2𝑖

2  

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )−(∑𝑥2𝑖 𝑥3𝑖)2
]                    (3.13) 

 

 Assume that 𝑥3𝑖 =  𝜆 𝑥2𝑖, where 𝜆 is a nonzero constant. Substituting this into 

Equations (3.12) and (3.13), 

 

)ˆ( 2V = [
𝜎2(𝜆𝟐∑𝑥2𝑖

2  )

(∑𝑥2𝑖
2 )(𝜆𝟐 ∑𝑥2𝑖

2 )−(𝜆∑𝑥2𝑖
2 )2

] ≈ ∞             (3.14) 

 

)ˆ( 3V = [
𝜎2(∑𝑥2𝑖

2  )

(∑𝑥2𝑖
2 )(𝜆𝟐 ∑𝑥2𝑖

2 )−(𝜆∑𝑥2𝑖
2 )2

] ≈ ∞            (3.15) 
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Thus, it can be said that if multicollinearity is perfect, the regression 

coefficients of the X variables are indeterminate and their standard errors are infinite. 

 

3.2.3 Estimation in the Presence of “High” but Imperfect Multicollinearity 

 The perfect multicollinearity situation is a pathological extreme. Generally, 

there is no exact linear relationship among the X variables, especially in data 

involving economic time series. Thus, turning to the three variables model in the 

deviation from given in Equation (3.7), instead of exact multicollinearity, it may be 

expressed as 

 x3i = λ x2i + vi               (3.16) 

Where 𝜆 ≠ 0 and vi is a stochastic error term such that ∑ 𝑥2𝑖 vi = 0 

In this case, the estimation of regression coefficients β2 and β3 may be 

possible. Substituting Equation (3.16) in Equations (3.8) and (3.9), the estimators 𝛽̂2 

and 𝛽̂3 become 

2̂  = 
(∑𝑦𝑖𝑥2𝑖)(𝜆

𝟐∑𝑥2𝑖
2 + ∑𝑣𝑖

2)−(𝜆 ∑𝑦𝑖𝑥2𝑖+∑𝑦𝑖𝑣𝑖)(𝜆∑𝑥2𝑖
2 )

(∑𝑥2𝑖
2 )(𝜆𝟐∑𝑥2𝑖

2 + ∑𝑣𝑖
2) – (𝜆∑𝑥2𝑖

2 )
2           (3.17) 

 

 3̂ = 
(∑𝑥2𝑖

2 )(𝜆∑𝑦𝑖𝑥2𝑖+ ∑𝑦𝑖𝑣𝑖)−(∑𝑦𝑖𝑥2𝑖+∑𝑦𝑖𝑣𝑖)(𝜆∑𝑥2𝑖
2 )

(∑𝑥2𝑖
2 )(𝜆𝟐∑𝑥2𝑖

2 + ∑𝑣𝑖
2)− (𝜆∑𝑥2𝑖

2 )
2           (3.18) 

 

Where ∑𝑥2𝑖𝑣𝑖 = 0. 

There is no reason to believe a prior that Equation (3.17) cannot be estimated. 

Of course, if vi is sufficiently small, say, very close to zero, Equation (3.16) will 

indicate almost perfect collinearity and it shall be back to the indeterminate case of 

Equation (3.10). 

The variance of 𝛽̂ is 

 )ˆ(V = (𝑥′ 𝑥)-1 𝜎2 

 

)ˆ( 2V = [
∑𝑥3𝑖

2  

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )−(∑𝑥2𝑖 𝑥3𝑖)2
] 𝜎2 

 

 )ˆ( 3V = [
∑𝑥2𝑖

2  

(∑𝑥2𝑖
2 )(∑𝑥3𝑖

2 )−(∑𝑥2𝑖 𝑥3𝑖)2
] 𝜎2 
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)ˆ( 2V = [
∑(𝜆𝑥2𝑖+𝑉𝑖)

2

(∑𝑥2𝑖
2 )∑(𝜆𝑥2𝑖+𝑣𝑖)2− (∑𝑥2𝑖(𝜆𝑥2𝑖+𝑣𝑖))2

]  𝜎2 

 = [
∑(𝜆𝟐∑𝑥2𝑖

2 + 𝑣𝑖
2+2𝜆 𝑥2𝑖 𝑣𝑖)

(∑𝑥2𝑖
2 )∑(𝜆𝟐𝑥2𝑖

2 + 𝑣𝑖
2+2𝜆 𝑥2𝑖 𝑣𝑖)− (𝜆∑𝑥2𝑖

2 +∑𝑥2𝑖 𝑣𝑖)
2]  𝜎

2 

 

  = [
(𝜆𝟐∑𝑥2𝑖

2 + ∑𝑣𝑖
2 )

(∑𝑥2𝑖
2  ∑𝑣𝑖

2)
]  𝜎2 , [∑𝑥2𝑖 𝑣𝑖 = 0]           (3.19) 

 

 )ˆ( 3V = [
∑𝑥2𝑖

2  

(∑𝑥2𝑖
2 )∑(𝜆𝑥2𝑖+𝑣𝑖)2−(∑𝑥2𝑖(𝜆𝑥2𝑖+𝑣𝑖))2

] 𝜎2 

 

  = [
∑𝑥2𝑖

2  

(∑𝑥2𝑖
2 )∑(𝜆𝟐𝑥2𝑖

2 + 𝑉𝑖
2+2𝜆 𝑥2𝑖 𝑣𝑖)−(𝜆∑𝑥2𝑖

2 +∑𝑥2𝑖 𝑣𝑖)
2] 𝜎

2 

 

  = [
∑𝑥2𝑖

2  

(∑𝑥2𝑖
2  ∑𝑣𝑖

2)
]  𝜎2 , [∑𝑥2𝑖 𝑣𝑖 = 0]              (3.20) 

 

 If vi is sufficiently small, say, very close to zero, Equations (3.19) and (3.20) 

will indicate to infinite. 

 Therefore, it can be seen that if multicollinearity is less than perfect, as in 

Equation (3.3) the regression coefficients, although determinate, possess large 

standard errors, which means the coefficients cannot be estimated with great precision 

or accuracy.  

 

3.2.4 Consequences of Multicollinearity 

 The consequences of multicollinearity are the theoretical consequences and 

the practical consequences. 

 

(i) Theoretical Consequences of Multicollinearity 

 The Ordinary Least Squares (OLS) estimators of the regression estimators are 

Best Linear Unbiased Estimator (BLUE) if the classical model's presumptions are 

met. Now it can be demonstrated that the OLS estimators still maintain the property 

of BLUE even when multicollinearity is very strong, as in the situation of near 

multicollinearity. 
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 Goldberger coined the term micronumerosity, to counter the exotic name 

multicollinearity. According to Goldberger, exact micronumerosity (the counter part 

of exact multicollinearity) arises when n, the sample size is zero, in which case any 

kind of estimation is impossible. Near micronumerosity, like near multicollinearity, 

arises when the number of observations barely exceeds the number of parameters to 

be estimated. 

 First, it is accurate that the OLS estimators are unbiased even in the presence 

of near multicollinearity. However, unbiasedness is a feature of repeated or multi-

sample sampling. The average sample values will converge to the estimator's real 

population values as the number of samples rises, if one gets repeated samples and 

computes OLS estimators for each of these samples while maintaining the value of X 

variables constant. This says nothing about the characteristics of estimators in any 

given sample. 

 Second, it is also true that the property of minimum variance is not destroyed 

by collinearity. The OLS estimators are effective because they have minimum 

variances in the class of all linear unbiased estimators. But it does not mean that the 

variance of OLS estimator will necessarily be small. 

 Third, multicollinearity is essentially a sample (regression) phenomenon in the 

sense that even if the X variables are not linearly related in the population they may 

be so related in the particular sample. All of these factors make it less comforting in 

practice that the OLS estimator is BLUE despite multicollinearity. 

 

(ii) Practical Consequences of Multicollinearity 

In cases of near of high multicollinearity, one is likely to encounter the 

following consequences. 

1. Although BLUE, the OLS estimators have large variances and covariances, 

making precise estimation difficult. 

2. Because of consequence 1, the confidence intervals tend to be much wider, 

leading to the acceptance of the “zero null hypothesis” (i.e., the true 

population coefficient is zero) more readily. 

3. Also because of consequence 1, the t ratio of one or more coefficients tends to 

be statistically insignificant. 

4. Although the t ratios of one or more coefficients tend to be statistically 

insignificant, R2, the overall measure of goodness of fit, can be very high. 
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5. The OLS estimators and their standard errors can be sensitive to small changes 

in the data. 

 

(a) Large Variance and Covariances of OLS Estimator 

 The variances and covariances of 𝛽̂2 and 𝛽̂3 are given by 

 )ˆ( 2V = 
𝜎2

∑𝑥2𝑖
2  (1− 𝑟23

2 )
             (3.21) 

)ˆ( 3V = 
𝜎2

∑𝑥3𝑖
2  (1− 𝑟23

2 )
                    (3.22) 

)ˆ,ˆ( 32 Cov = 
−𝑟23 𝜎2

(1− 𝑟23
2 )√∑𝑥2𝑖

2  ∑𝑥3𝑖
2

                   (3.23) 

where r23 is the coefficient of correlation between X2 and X3. 

It is apparent from Equations (3.21) and (3.22) that as r23 tends toward 1. That 

is, as collinearity increases, the variances of the two estimators increase and in the 

limit when r23=1 , they are infinite. It is equally clear from Equation (3.23) that as r23 

increases toward 1, the covariance of the two estimators also increases in absolute 

value. 

The speed with which variances and covariances increase can be seen with 

variance-inflating factor (VIF), which is defined as 

 VIF= 
1

(1−𝑟23
2 )

 

VIF shows how the variance of an estimator is inflated by the presence of 

multicollinearity. As 𝑟23
2  approaches 1, the VIF approaches infinity. As can be readily 

seen, if there is no collinearity between X2 and X3, VIF will be 1, using this definition, 

we can express as  

 )ˆ( 2V = 
𝜎2

∑𝑥2𝑖
2  

 VIF 

 )ˆ( 3V = 
𝜎2

∑𝑥3𝑖
2  

 VIF 

Which show that the variances of 𝛽̂2 and 𝛽̂3 are directly proportional to VIF. 
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(b) Wider Confidence Intervals 

 Because of the large standard errors, the confidence intervals for the relevant 

population parameters tend to be larger. Thus, increase of high multicollinearity, the 

sample data may be compatible with a diverse set of hypotheses. Hence, the 

probability of accepting a false hypothesis (i.e., type II error) increases. 

 

(c) Insignificant t Ratios 

 Recall that to test the null hypothesis that 𝛽2 =0, use the t ratio and compare 

the estimated t value with the critical t value from the t table. But in case of high 

collinearity the estimated standard errors increase dramatically, thereby making the t 

value smaller. Therefore, one will increasingly accept the null hypothesis that the 

relevant true population value is zero. 

 

(d) High R2 but Few Significant t Ratios 

Consider the k-variable linear regression model: 

 Yi = 𝛽1 + 𝛽2X2i + 𝛽3X3i + …+ 𝛽kXki + ui 

 In case of high collinearity, it is possible to find, that one or more of the partial 

slope coefficients are individually statistically insignificant on the basis of the t test. 

Yet the R2 in such situations may be so high, say, in excess of 0.9, that on the basis of 

the F test one can convincingly reject the hypothesis that 𝛽2 = 𝛽3 = … = 𝛽k = 0. This 

one of the signals of multicollinearity insignificant t values but a high overall R2 (and 

a significant F value). 

 

3.2.5 Detection of Multicollinearity 

 After studied the nature of multicollinearity, the detection of multicollinearity 

will be discussed in this section. 

 Multicollinearity is a question of degree and not of kind. The meaningful 

distinction is not between the presence and the absence of multicollinearity but 

between its various degrees. Since multicollinearity refers to the degree of 

relationship between explanatory variables that are assumed to be non-stochastic, it is 

a feature of the sample and not of the population. Since multicollinearity is a sample 

phenomenon do not have one unique method of detecting it for measuring its strength. 

But, it has some rules of thumb which all the same. Some of them are; 
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1. High R2 but few significant t ratios. This is the classic symptom of 

multicollinearity. If R2 is high, say, in excess of 0.8, the F test in most cases will reject 

the hypothesis that the partial slope coefficients are simultaneously equal to zero, but 

the individual t tests will show that none or very few of the partial slope coefficients 

are statistically different from zero. 

2. High pair-wise correlations among regressors. Another suggested rule of 

thumb is that if the pair-wise or zero-order correlation coefficient between two 

regressors is high, say, in excess 0.8, then multicollinearity is a serious problem. The 

problem with this criterion is that, although high zero-order correlations may suggest 

collinearity, it is not necessary that may be high to have collinearity in any specific 

case. 

3. Eigenvalues and condition index. Eigenvalues and the condition index may 

be used to diagnose multicollinearity. Montgomery and Peck (2021), presented the 

condition number k defined as 

 k = 
Maximum eigenvalue

Minimum eigenvalue
 

 And the condition index defined as 

 CI = √
Maximum eigenvalue

Minimum eigenvalue
 = √𝑘 

 If k is between 100 and 1000 there is moderate to strong multicollinearity and 

if its exceeds 1000 there is severe multicollinearity. 

 

4. Tolerance and Variance Inflation Factor. For the k variable regression 

model, the variance of a partial regression coefficient can be expressed as 

   )ˆ( jV  = 
𝛿2

∑𝑥𝑗
2 . (

1

1− 𝑅𝑗
2) 

     = 
𝛿2

∑𝑥𝑗
2 . VIFj 

 The VIF provides an index that measures how much the variance of an 

estimated regression coefficient is increased because of the multicollinearity. As per 

practical experience, if any of the VIF values exceeds 5 or 10, it is an indication that 

the associated regression coefficients are poorly estimated because of 

multicollinearity, Montgomery (2001). 

 Tolerance can also be used to detect multicollinearity. It is defined as, 
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  TOLj  = (1 − Rj
2) 

   = 1- VIFj 

TOLj = 1, if Xj is not correlated with other regressors 

TOLj = 0, if Xj is perfectly related to other regressors. 

 

3.2.6 Remedy of Multicollinearity 

 Paul, R. K. (2006) focused on multicollinearity is often caused by the choice 

of model, such as when two highly correlated regressors used in the regression 

equation. In these situations some respecification of the regression equation may 

lessen the impact of multicollinearity. One approach to model respecification is to 

redefine the regressors. If X1, X2 and X3 are linearly dependent, it may be possible to 

find some function such as X = (X1 + X2) / X3 or X = X1 X2 X3 that preserves the 

information content in the original regressors but reduces the ill conditioning. 

 Another widely used approach to model respecification is variable elimination. 

That is, if X1, X2 and X3 are nearly linearly dependent, eliminating one regressor may 

be helpful in combating multicollinearity. Variable elimination is often a highly 

effective technique. However, it may not provide a satisfactory solution if the 

regressors dropped from the model have significant explanatory power relative to the 

response Y, that is eliminating regressors to reduce multicollinearity damage the 

predictive power of the model. Care must be exercised in variables selection because 

many of the selection procedures are seriously distorted by the multicollinearity and 

there is no assurance that final model will exhibit any lesser degree of 

multicollinearity than was present in the original data. 

 Since multicollinearity is a sample feature, it is possible that in another sample 

involving the same variables collinearity may not be serious as in the first sample. 

Sometimes simply increasing the size of the sample may attenuate the collinearity 

problem. If one uses more data, or increase the sample size, the effects of 

multicollinearity on the standard errors (SE) will decrease. This is because the 

standard errors are based on both the correlation between the sample size. The larger 

the sample size, the smaller is the SE. 

Biased estimators of regression coefficients can also be obtained by using a 

procedure known as principal component regression. A small eigenvalues of 𝑿′𝑿  

means that the variance of the corresponding regression coefficient will be large. The 
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principal components regression approach combats multicollinearity by using less 

than the full set of principal components in the model. To obtain the principal 

components estimator, assume that the regressors are arranged in order of decreasing 

eigenvalues, λ1 ≥ λ2 ≥…≥ λp > 0 suppose that the last of these eigenvalues are 

approximately equal to zero. In principal components regression the principal 

components corresponding to near zero eigenvalues are removed from the analysis 

and least squares applied to the remaining components. 

 

3.2.7 The Effects of Multicollinearity 

 A rule of thumb is that the sample correlation coefficient between two 

explanatory variables is greater than 0.8 or 0.9, then one have to say that there is a 

serious problem of multicolinearity. However, some use the determinant of 𝑿′𝑿  as a 

measure of multicollinearity. If the explanatory variables are standardized, then 𝑿′𝑿   

become the matrix of simple correlation coefficient for 𝑋. 

 An important feature of note that the regression coefficient β1 is the same 

where only 𝑋1 is included in the model or both independent variables are included. 

The same holds for β2. Thus is a result of the two independent variables being 

uncorrelated. The erroneous sum of squares is connected to another crucial property. 

In general, when two or more independent variables are uncorrelated, the marginal 

contribution of one independent variable in reducing the error sum of squares when 

the other independent variables are the model is exactly the same as when this 

independent variable is in the model alone. When the independent variables are 

uncorrelated, the effects ascribed to them by the regression model are the same no 

matter which other independent variables are included in the model. 

Regression of Y on X1 and X2 

     +++= 22110  XXY  

Regression of Y on X1 

    
110  XY  +=  

Regression of Y on X2 

    
220  XY  +=  

 The regression coefficient β1 is the same whether only X1 is included in the 

model or both independent variables are included. 
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 Multicollinearity among the independent variables may have significant 

effects on how a fitted regression model is interpreted and applied. The pairwise 

coefficients of simple correlation between the independent variables, which are the 

diagnostic tool taken into consideration here for detecting multicollinearity, are 

frequently useful. However, there are situations when significant multicollinearity is 

present but not revealed by the pairwise correlation coefficients. Also take into 

account a variety of corrective actions for reducing the impact of multicollinearity. 

 It was noted that a near-zero determinant of 𝑿′𝑿 is a potential source of 

serious round off errors in least square results. This determinant approaches zero 

when there is severe multicollinearity. As a result, in cases of extreme 

multicollinearity, the regression coefficients may be affected by significant rounding 

errors and sampling variances. Therefore, when multicollinearity is present, it is 

especially advised to use the correlation transformation when constructing the 

regression model. 

 When the independent variables are highly correlated, the partial correlation 

coefficients between the dependent variable and each of the independent variables 

also tend to become erratic from sample to sample, making the estimated regression 

coefficient less precise. When the model's variables are changed using the correlation 

transformation, the impact of intercorrelations between the independent variables on 

the standard deviations of the calculated regression coefficients can be quickly 

observed. 

 

3.3 Principal Component Analysis  

 Johnson & Wichern (2002) presented through a few linear combinations of 

these variables, a principle component analysis attempts to describe the variance-

covariance structure of a set of variables. Data interpretation and minimization are its 

main goals. 

Although p components are necessary to replicate the overall system 

variability, k of the primary components often account for the majority of this 

variability. If the k components contain the same amount of data that the original p 

variables did. When the initial p variables are replaced by the k principal components, 

the original data set of n measurements on p variables is transformed into a data set of 

n measurements on k principal components.  
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Principal component analysis frequently exposes relationships that were not 

previously known, allowing for interpretations that would not typically be possible. 

Principal components are specific linear combinations of the p random variables X1, 

X2, ... , Xp in algebra. These linear combinations, which have variables X1, X2, ... , Xp 

as the coordinate axes, describe the choice of a new coordinate system in terms of 

geometry. The new axes show the directions with the highest degree of variability and 

offer a more concise and straight forward explanation of the covariance structure. 

The only factor that influences principal components is the covariance matrix 

∑ (or correlation matrix 𝝆) of variables X1, X2, ... , Xp. It is not necessary to use a 

multivariate normal assumption for their development. On the other hand, the 

constant density ellipsoids provide appropriate interpretations for main components 

determined for multivariate normal populations.  

Let the random vector 𝐗′ = [X1, X2 ,…, Xp ] have the covariance matrix ∑ with 

eigenvalues 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑝 ≥ 0. 

Consider the linear combinations 

𝑌1= 𝒂𝟏
′  X = 𝑎11 𝑋1+ 𝑎12𝑋2+ …+ 𝑎1𝑝𝑋𝑝 

𝑌2= 𝒂𝟐
′  X = 𝑎21 𝑋1+ 𝑎22𝑋2+ …+ 𝑎2𝑝𝑋𝑝 

  ⁝ 

𝑌𝑝= 𝒂𝒑
′  X = 𝑎𝑝1 𝑋1+ 𝑎𝑝2𝑋2+ …+ 𝑎𝑝𝑝𝑋𝑝 

The principal components are those uncorrelated linear combinations   

  𝑌1, 𝑌2, … , 𝑌𝑝 whose variances in (3.1) are as large as possible.  

The first principal component is the linear combination with maximum 

variance. That is, it maximizes Var (𝑌1) = 𝒂1
′  ∑ 𝒂1. It is clear that Var (𝑌1) = 𝒂1

′  ∑ 𝒂1 

can be increased by multiplying any 𝒂1 by some constant. It is convenient to focus 

attention just on coefficient vectors of unit length in order to eliminate this 

uncertainty. Consequently, it can define 

First principal component = linear combination 𝒂1
′  X that maximizes  

   Var (𝒂1
′  X) subject to 𝒂1

′  𝒂1= 1 

Second principal component = linear combination 𝒂2
′  X that maximizes  

   Var (𝒂2
′  X) subject to 𝒂2

′  𝒂2= 1 and 

   Cov(𝒂1
′  X, 𝒂2

′  X) = 0 
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At the ith step 

ith principal component = linear combination 𝒂𝑖
′ X that maximizes  

      Var (𝒂𝑖
′ X) subject to 𝒂𝑖

′ 𝒂𝑖= 1 and 

      Cov (𝒂𝑖
′ X, 𝒂𝑘

′  X) = 0 for k < i 

Let ∑ is the diagonal matrix 

  ∑ = 

[
 
 
 
 

𝜎11   0………  0
0       𝜎22 … .…0
.        .                .
.        .                .

    0       0… ……  𝜎𝑝𝑝]
 
 
 
 

 

 A regression variable's multicollinearity can come from a variety of causes. 

Small eigenvalues 𝑿′𝑿 are an indication that one or more of these issues are present. 

It is obvious that the number of input variables can be decreased if there are zero 

eigenvalues. The situation is less evident if the small eigenvalues are close to zero. 

Departures from zero could be the result of measurement near reliance, and they 

might indicate true linear dependence. It's unclear what to do in this situation. 

 The multiple regression model makes the assumption that there isn't a precise 

linear relationship between the explanatory variables. If a relationship of this nature 

does exist, it indicates that the explanatory variables are perfectly collinear. The 

coefficient vector is not estimable in this situation. This is referred to as a situation 

where the explanatory variables are multicollinear. 

 Prediction is generally regarded as adequate when increases in the predictor 

variable are strongly correlated with increases or decreases in the response variable. 

Predictor variables contribute to prediction of a response variable only to the extent 

that variation in the predictor variables helps to account for an explain variation in the 

response variable prediction equations. 

 The predictor variable usually has limited usefulness in forecasting the 

response if it stays largely constant while the responder variable changes. 

Multicollinearities are generally constant for all responses linear combinations of 

predictor variables. When the response variable varies but the multicollinearities 

remain largely constant, they are typically in a data base, which dramatically increases 

least squares estimator variances and causes other issues with coefficient estimates. 

This is similar to the case with single-variable least squares. Principal component 

coefficient estimators aim to add as little bias as possible while significantly reducing 

estimator variances by removing multicollinearities from the least squares estimator. 
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3.3.1 Objectives of Principal Component Analysis 

 According to statistical theory, the set of main components produces a 

practical set of coordinates, and the component's corresponding variances describe 

their statistical characteristics. In statistical practice, the linear combination with a 

high variance is found using the principal component approach. The number of 

variables considered in many exploratory investigations is too great to handle. 

Discarding the linear combinations with low variances is one method of lowering the 

number of variables to be treated because the deviations in these studies are what are 

important. 

Abdi and Williams (2010) investigated the main goal of PCA is to minimize 

the dimensionality of a data set made up of many interconnected variables while 

preserving as much of the data set's variance as feasible. The goals of PCA are: 

(1) to extract the most important information from the data; 

(2) to compress the size of the data set by keeping only important information; 

(3) to simplify the description of the data set and 

(4) to analyze the structure of the observations and the variables. 

PCA computes new variables—called principal components—that are 

generated as linear combinations of the original variables in order to accomplish these 

objectives. It is necessary for the first primary component to be as large as possible. 

The second component must have the biggest variance and be orthogonal to the first 

component in order to be computed. The order components are calculated in a similar 

way. Factor scores are the values of these new variables for the observations, and 

these factor scores can be geometrically understood as the observations projected onto 

the principal components. 

 The PCR method may be broadly divided into three major steps: 

(1) To acquire the principal components, perform PCA on the observed data 

matrix for the explanatory variables. Then, choose a subset of the obtained 

principal components for further use based on some approximative criteria. 

(2) Next, perform an ordinary least squares regression on the observe vector of 

results to determine the predicted regression coefficients for the principle 

components that were chosen as variables (with dimension equal to the 

number of selected principal components). 

(3) The final PCR estimator (with dimension equal to the total number of 

covariates) is obtained by transforming this vector back to the scale of the 
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actual covariates using the chosen PCA loadings (the eigenvectors 

corresponding to the chosen principal components). This estimator is then 

used to estimate the regression coefficients that define the original model. 

 

3.3.2 Determining the Number of Principal Components 

 There is always the question of how many components to retain. There is no 

definitive answer to this question. Things to consider include the amount of total 

sample variance explained, the relative sizes of the eigenvalues (the variance of the 

sample components), and the subject-matter interpretations of the components. In 

addition, a component associated with an eigenvalue near zero and, hence, deemed 

unimportant, may indicate as unsuspected linear dependency in the data.  

 A useful visual aid to determining an appropriate number of principal 

components is a scree plot. With the eigenvalues ordered from largest to smallest, a 

scree plot is a plot of λ̂𝑖 versus i—the magnitude of an eigenvalue versus its number. 

To determine the appropriate number of components, look for an elbow in the scree 

plot. The number of components is taken to be the point at which the remaining 

eigenvalues are relatively small and all about the same size. 

 

3.3.3 Standardized Principal Components  

Variables should probably be standardized if the variables are measured on 

scales with widely differing ranges or if the units of measurement are not 

commensurate. Principal components may also be obtained for the standardized 

variables 

Z1 = 
(X1−μ1)

√σ11
 

Z2 = 
(X2−μ2)

√σ22
 

⁝ ⁝ 

Zp = 
(Xp−μp)

√σpp
 

 In matrix notation, 

 Z = (𝐕
1

2⁄ )−1 (X - µ) 

where the diagonal standard deviation matrix 𝐕
1

2⁄  is defined in  
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𝐕
1

2⁄  = 

[
 
 
 
 √𝜎11         0      …        0

0         √𝜎22      …        0
⁝                ⁝      ⋱         ⁝

  0               0     …  √𝜎𝑝𝑝]
 
 
 
 

 

Clearly, E (Z) = 0 and  

 Cov (Z) = (𝐕
1

2⁄ )−1 ∑ (𝐕
1

2⁄ )−1 = 𝝆 

The principal components of Z may be obtained from the eigenvectors of the 

correlations matrix 𝝆 of X. All previous results apply, with some simplifications, 

since the variance of each Zi is unity and shall continue to use the notation Yi to refer 

to the ith principal component and (λi, ei) for the eigenvalue—eigenvector pair from 

either 𝝆 or ∑. However, the (λi, ei) derived from ∑ are, in general, not the same as the 

ones derived from 𝝆. 
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CHAPTER IV 

APPLICATION OF PRINCIPAL COMPONENT ANALYSIS TO 

MULTICOLLINEAR DATA 

 

 In this chapter, describe the application of principal component analysis by 

using the sesame production data from the period 1995 to 2020. The firstly describe 

the descriptive statistics of sesame production data and the secondly describe the 

correlation matrix, summarizing sample variation and detecting and remedy of 

multicollinearity. In this study, the dependent variable is the production (PROD) and 

the explanatory variables considered in the present study are sown acreage (SOWN), 

harvested acreage (HAR), irrigation (IRRI), agricultural loan (LOAN) and quality 

seeds (QTY). 

 

4.1 Descriptive Statistics 

 In this section, mean value, standard deviation, minimum value and maximum 

value of sesame production in Myanmar are expressed. The descriptive Statistics for 

production, sown, harvested, irrigation, loan and quality seeds of sesame production 

in Myanmar is presented as shown in Table (4.1). 

 
 

Table (4.1)  

Descriptive Statistics for Sesame in Myanmar 

Variable Mean Std. Deviation Minimum Maximum 

PROD 578.246 229.090 253.2 854 

SOWN 3568.46 390.979 2557 4052 

HAR 3192.19 632.796 1521 3863 

IRRI 225.643 56.942 147.76 335.49 

LOAN 17226.410 32623.938 96.27 123518.10 

QTY 1195.62 1246.126 68 5091 

Source: Own calculation (2022) 

 In Table (4.1), the sesame production ranges between 253.2 ton and 854 ton 

with mean 578.246 ton and standard deviation 229.090 ton. Sown acreage ranges 

between 2557 acres and 4052 acres with mean 3568.46 acres and with standard 
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deviation 390.979 acres and harvested acreage ranges between 1521 acres and 3863 

acres with mean 3192.19 acres and with standard deviation 632.796 acres. Irrigation 

ranges between 147.76 acres and 335.49 acres with mean 225.643 acres and with 

standard deviation 56.942 acres and agricultural loan ranges between 96.27 kyats in 

millions and 123518.10 kyats in millions with mean 17226.410 kyats in millions and 

with standard deviation 32623.938 kyats in millions. Quality seeds ranges between 68 

baskets and 5091 baskets with mean 1195.62 baskets and with standard deviation 

1246.126 baskets. 

 

4.2 Computation of the Correlation Matrix 

 Principal Component Analysis (PCA) is based on correlations between 

measured variables, a correlation matrix containing the inter correlation coefficients 

for the variables must be computed. The variables should be measured at least the 

ordinal level, although two-category nominal variables can be used. If all variables are 

nominal variables, then specialized forms of factor analysis, such as Boolean factor 

analysis (BMDP, 2004) are more appropriate. 

 

Table (4.2)  

Correlation Matrix 

Correlation 

 SOWN HAR IRRI LOAN QTY 

SOWN 1.000 .901 .124 .134 -.360 

HAR .901 1.000 -.044 .287 -.216 

IRRI .124 -.044 1.000 .554 .094 

LOAN .134 .287 .554 1.000 .197 

QTY -.360 -.216 .094 .197 1.000 

Source: Own calculation (2022) 

 

 One of these independent factors is eliminated from the correlation matrix if 

any of the dependent variables included there have a strong correlation with any other 

dependent variable or if the value of the correlation is significant. The values of 

correlation among the explanatory variables are shown in above Table (4.2). 

In correlation matrix of Table (4.2), these correlation coefficients demonstrate 

among the explanatory variables have correlations with each other. High correlations 
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between explanatory variables might lead to multicollinearity issues. From the Table 

(4.2), it can be seen that there are relatively highly correlations among sown acreage 

and harvested acreage. Likewise, sown acreage and harvested acreage have a weakly 

correlation among all other explanatory variables. 

There are relatively fairly correlations among irrigation and agricultural loan. 

Then, there are relatively weakly correlation among irrigation and other remaining 

explanatory variables. 

There are relatively weakly correlations among quality seeds and all other 

explanatory variables. Additionally, given that the pair-wise correlations of the 

majority of the explanatory variables are quite high, multicollinearity may have 

developed in the data set. 

Table (4.3) 

Eigenvalues of Correlation 

No. Eigenvalue 
Incremental 

Percent 

Cumulative 

Percent 

Condition 

Number 

1 2.121 42.428 42.428 1.000 

2 1.603 32.052 74.479 1.324 

3 0.817 16.343 90.823 2.596 

4 0.429 8.574 99.397 4.948 

5 0.030 0.603 100.000 70.362 

Source: Own calculation (2022) 

 

 Table (4.3) gives an eigenvalue analysis of the independent variables after 

they have been centered and scaled. The sum of all eigenvalues of the correlation 

matrix is 5 (2.121 + 1.603 + … + 0.030) that point out is equal to the number of 

explanatory variables. Results of eigenvalues in Table (4.3) indicated the 

multicollinearity problem in the data set because of eigenvalues near zero be a sign of 

a multicollinearity problem. 

 The third column of Table (4.3) shows incremental percent. This eigenvalue's 

proportion of the total is expressed in incremental percentages. This percent 

approaching 0, according to the same eigenvalue theory, point to a multicollinearity 

issue in the data. 

 The last column of eigenvalue of correlation is condition number, largest 

eigenvalue divided by each corresponding eigenvalue. Since the eigenvalue are really 
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variances, the condition number is a ratio of variances. Condition numbers greater 

than 1000 indicate severe multicollinearity problem and between 100 and 1000 

indicate a mild multicollinearity problem (Montgomery, 2001). According to that, it 

was found the multicollinearity is present. 

 The report of Table (4.3) displays the eigenvectors associated with each 

eigenvalue. By rotating the axis from those specified by the variables to a new set 

defined by the variances of the variables, eigenvalue analysis is based on the idea that 

the axes can be more accurately described. By using weighted averages of the 

standardized original variables, rotation is achieved. 

 

4.3 Detecting Multicollinearity 

 In this section, based on the time series data of sesame production and the 

explanatory variables are sown acreage, harvested acreage, irrigation, agricultural 

loan and quality seeds during the period of 1995 to 2020 are calculated. The results 

are shown the following Table (4.4). 

From the below Table (4.4), predictor variable irrigation is a negative 

correlation with dependent variable production since the estimated regression 

coefficient  𝛽3 has a negative sign. 

Table (4.4) 

Least Squares Multicollinearity Results of Sesame Production 

Variables 

Unstandardized 

Coefficients 

Standardized 

Coefficients  

T 

 

Sig. 

Collinearity 

Statistics 

B Std. Error Beta TOL VIF 

Constant 

SOWN 

HAR 

IRRI 

LOAN 

QTY 

-1084.612*** 

0.512*** 

         0.009 

       -1.152** 

        0.023 

        0.002** 

287.309 

0.196 

0.124 

0.652 

0.019 

0.001 

 

0.875 

0.025 

-0.286 

0.126 

0.313 

-3.775 

2.620 

0.072 

-1.768 

1.236 

1.954 

0.001 

0.016 

0.944 

0.092 

0.231 

0.065 

 

0.069 

0.065 

0.294 

0.743 

0.300 

 

14.441 

15.285 

3.402 

1.346 

3.330 

R-squared 

Adjusted R-squared 

Std. Error of the Estimate 

Durbin-Watson 

0.846 

0.807 

100.613 

0.790 

   F-statistic 

   Prob (F-statistic) 

21.923*** 

        .000 

 

Source: Own calculation 

*** denote significant at 1% level. 

** denote significant at 10% level. 
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 The estimated regression equation for sesame production is 

PROD = -1084.612 + 0.512 SOWN + 0.009 HAR -1.152 IRRI + 0.023 LOAN + 0.002 QTY 

From the estimated regression equation for sesame production, it is found that 

sesame production is positively related to sown acreage, harvested acreage, 

agricultural loan and quality seeds and is negatively related to irrigation. If holding 

the harvested acreage, irrigation, agricultural loan and quality seeds are constant, a 1 

thousand acre increase in sown acreage led on the average to about 0.512 ton increase 

in production and holding the sown acreage, irrigation, agricultural loan and quality 

seeds are constant, a 1 thousand acre increase in harvested acreage led on the average 

to about 0.009 thousand acreage increase in production. Holding the sown acreage, 

harvested acreage, agricultural loan and quality seeds are constant, a 1 thousand acre 

increase in irrigation led on the average to about 1.152 thousand acreage decrease in 

production. Holding the sown acreage, harvested acreage, irrigation and quality seeds 

are constant, 1 kyat millions increase in agricultural loan led on the average to about 

0.023 thousand acreage increase in production and 1 basket increase in quality seeds 

led on the average to about 0.002 thousand acreage increase in production holding the 

other variables are constant. 

 The sown acreage (2.620) is statistically significant at 1% level and irrigation 

(1.768) and quality seed (1.954) are also statistically significant at 10% level but other 

variables (harvested acreage and agricultural loan) are not significant. The result from 

Table (4.2) indicates that the overall model is significant (F-value is 21.923, p-value, 

0.000). Specifically, an assessment of statistical significance of individual predictors 

indicates that some predictors are significant while others are insignificant. The major 

reason is presence of collinearity among predictors. It can be concluded that a linear 

relationship exists between sesame production and at least one of the explanatory 

variables.  

The variance inflation factor (VIF) is a measure of multicollinearity. It is the 

reciprocal of 1- 𝑅𝑥
2 , where 𝑅𝑥

2 is the R2 obtained when this variable is regressed on 

the remaining independent variables. The 𝑅𝑥
2 for sown is 0.931, harvested is 0.935, 

irrigation is 0.706, loan is 0.257 and quality seeds is 0.7. After that, the VIF is 

calculated by 
1

1− 𝑅𝑥
2 

 that is illustrate in Table (4.2). As the result of Table (4.2), the 

VIF values of sown acreage, irrigation, agricultural loan and quality seeds are 14.441, 

15.285, 3.402, 1.346 and 3.330 and VIF values of sown acreage and harvested 
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acreage are greater than 10 and the VIF values of irrigation, agricultural loan and 

quality seeds are not greater than 10. Tolerance is just 1- 𝑅𝑥
2 , the denominator of the 

variance inflation factor (VIF). According to the results, tolerance values of each 

variable are 0.069, 0.065, 0.294, 0.743 and 0.300 which are closely to 0. Therefore, 

these VIF and TOL values are not acceptable. It indicates that there occurs a 

multicollinearity problem in this study.  

 The R value is 0.920, it means that the production of sesame has a positive 

relationship with sown acreage, harvested acreage, irrigation, agricultural loan and 

quality seeds.  

 The coefficient of multiple determination demonstrates the percentage of 

dependent variable overall variability that can be accounted for by the explanatory 

variables. The R-Square value is 0.846, 84.6% of the variation in sesame production 

was explained in terms of sown acreage, harvested acreage, irrigation, agricultural 

loan and quality seeds. Because of R-Square value is 0.846, in this result the value of 

R-Square shows good fit.  

 Adjusted R-Square value is 0.807 and it means that all the explanatory 

variables can explain 80.7% of variation in sesame production is explained sown 

acreage, harvested acreage, irrigation, agricultural loan and quality seeds and the 

remaining percentage 19.3% due to other factors that are not included in the model. It 

has been found that there is a strongly positive relationship between the sesame 

production of Myanmar with sown acreage, harvested acreage, irrigation, agricultural 

loan and quality seeds. The standard error of the estimate (100.613) is very large. 

 

Figure (4.1) 

Durbin-Watson Statistic  

 

 

Reject H0  Zone of          Zone of           Reject H0 

Evidence of   indecision     Do not reject H0              indecision        evidence of 

Positive            evidence of no             negative 

autocorrelation            autocorrelation                   autocorrelation 

 

         dL         dU  2 4-dU  4-dL 

       0.756      1.645  2.355  3.244 



39 

 Figure (4.1), represents to determine if the null hypothesis of no 

autocorrelation is rejected. For 𝛼 = 0.01 or 1% level of significance, critical values for 

the Durbin-Watson d statistic are dL = 0.756 and dU = 1.645. Since, DW = 0.790, the 

null hypothesis is not rejected and it is concluded that there is no evidence of 

autocorrelation. As a general rule, if d is less than 2, assume that the Durbin-Watson d 

statistic is a positive autocorrelation. 

 

4.4 Summarizing Sample Variation 

 The sample variation of the components has been described in Table (4.5). 

 

Table (4.5) 

Total Variance Explained 

Component 

Initial Eigenvalues 
Extraction Sums of 

Squared Loadings 

Rotation Sums of Squared 

Loadings 

Total 
%of 

Variance 

Cumulative 

% 
Total 

%of 

Variance 

Cumulative 

% 
Total 

%of 

Variance 

Cumulative 

% 

1 

2 

3 

4 

5 

2.121 

1.603 

0.817 

0.429 

0.030 

42.428 

32.052 

16.343 

8.574 

0.603 

42.428 

74.479 

90.823 

99.397 

100.000 

2.121 

1.603 

 

42.428 

32.052 

 

42.428 

74.479 

 

2.075 

1.649 

41.500 

32.980 

41.500 

74.479 

 

Source: Own calculation (2022) 

Extraction Method: Principal Component Analysis 

 

 Table (4.5) presents principal components together with its corresponding 

eigenvalues and total variance explained. The principal components in this attributes 

of satisfaction are uncorrelated attributes in the original data set. The eigenvalues 

were listed in descending order from largest to smallest value.  

According to Table (4.5), the total variance explained section presents the 

number of common factors computed, the eigenvalues associated with these factors, 

the percentage of total variance accounted for by each factor and the cumulative 

percentage of total variance accounted for by the factors. Although five factors have 

been computed, it is obvious that not all five factors will be useful in representing the 

list of five variables. There were two eigenvalues (2.121, 1.603) greater than 1.0. The 

first principal component has largest variance that account for 42.4% of the total 

variance. This PC has comparatively largest eigenvalue of 2.1 which is equivalent to 
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the eigenvalues of two variables. The second PC has an eigenvalue of 1.6 that 

accounts to 32.1% of the variability of the data. As a rule of thumb, the first two 

components have eigenvalue greater than one and collectively account to 74.5% of 

variability of the original data set losing only 25.5% of the information. Therefore 

only two principal components are extracted and retained from five principal 

components without much loss of information. This implies that the original 

information was reduced from 5-dimension of data set into a minimum size (2-

dimension) while at the same time maximizing the variability of the original data set. 

The principal component analysis can frequently be used as a solution to 

multicollinearity.  

 

4.5 The Number of Principal Components 

 The important useful criterion for deciding the number of principal 

components to be retained is based on observation of visual appearance of scree plot. 

The arrangement of eigenvalues are arranged in descending order from largest to 

smallest values which are presented on y-axis against number of principal 

components. Determining the maximum eigenvalues based on scree plot is subject to 

researcher judgment and some time the break point cannot be seen clearly. 

 The following Figure (4.2) represents the eigenvalues plotted against the 

corresponding component. A scree plot is observed from the three components 

onwards indicating that an eigenvalue is less than 1, and only two components have 

been retained.  
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Figure (4.2) 

 
 Source: SPSS Output 

 

Table (4.6) 

Rotated Component Matrix 

 Component 

1 2 

SOWN 0.955 0.114 

HAR 0.925 0.151 

QTY -0.536 0.395 

LOAN 0.139 0.882 

IRRI -0.016 0.824 

      Source: own calculation (2022) 

      Extraction Method: Principal Component Analysis. 

      Rotation Method: Varimax with Kaiser Normalization 

a. Rotation converged in 3 iterations. 

 

In above Table (4.6) indicate the outputs of varimax methods of rotation 

which is used to smooth the loadings and hence simplify interpretation. The outputs of 

varimax provide clear interpretation of the principal components in a way that only 

high loadings are retained to specific components and the low loadings are 
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minimized. This improves impression of output by identifying the variables that are 

highly related to a corresponding PC. 

 Thus the two selected principal components are the linear combination of the 

original variables that contribute much to the total variance. The fitted PCs are: 

Z1 = 0.955 SOWN + 0.925 HAR 

Z2 = 0.395 QTY + 0.882 LOAN + 0.824 IRRI 

 The first principal component is the linear combination of two variables which 

are related namely variable SOWN and HAR. The second principal component 

composed of variable QTY, LOAN and IRRI which are highly related. The variables 

within components are highly related while the group of variables in a particular 

components are not related with another group of variables loaded to another 

component. 

 After removing the principal components which are less important, the 

modified linear regression model is now:  

Y = β0 + β1 Z1 + β2 Z2 + ε 

Where predictors Z1 and Z2 are principal components 

  

Table (4.7) 

Results of Sesame Production After Removal of Multicollinearity 

Variables 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
 

T 

 

Sig. 

Collinearity 

Statistics 

B Std. Error Beta TOL VIF 

Constant 

Z1 

Z2 

-817.814*** 

       .215*** 

       .001 

125.103 

.020 

.001 

 

.886 

.131 

-6.537 

10.856 

  1.608 

.000 

.000 

.121 

 

.948 

.948 

 

1.055 

1.055 

R-squared 

Adjusted R-squared 

 Std. Error of the Estimate 

Durbin-Watson 

  0.855 

  0.842 

90.1017 

  0.689 

F-statistic 

Prob (F-statistic) 

 

67.706 

    .000 

Source: Own calculation 

*** denote significant at 1% level. 
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 Based on the results shown in above table, the fitted model can be developed 

as follows: 

 PROD = -817.814 + 0.215 Z1 + 0.001 Z2 

Instead of using OLS method of estimating parameters in linear regression 

model, principal components regression was used. Table (4.7) indicates results of 

regressing dependent variable on two explanatory variables (PCs). In comparison this 

method brought some changes on standard error. In the original regression model 

where OLS method was employed, standard errors of estimate coefficients were large 

that weakened the statistical power due to presence of severe multicollinearity. This 

contrary to the output of regression model after utilizing principal component, where 

the standard errors were smaller compared to the OLS methods. In assessing whether 

the collinearity exist between variables, VIF was computed on each of the variables 

treating as dependent variable and regress on the rest of the variables. The result 

indicates that multicollinearity problem was eliminated since VIF values for each of 

the variables were less than 10. 

In Table (4.7), the VIF values of Z1 and Z2 are 1.055 and the total value is 2.11 

which are not greater than 10 and TOL values are 0.948 which is closely to one. As a 

result, this study assumes that there is no multicollinearity and provides an acceptable 

amount of near collinearity. The PCR approach indicates the correct sign for the 

coefficient of sesame production from the above fitted model. It provides the best-fit 

model for manufacturing as a result.  

 The coefficient of multiple determination demonstrates the percentage of 

dependent variable overall variability that can be accounted for by the explanatory 

variables. The R-Square value is 0.855, 85.5% of the variation in sesame production 

was explained in terms of explanatory variables. Because of R-Square value is 0.855, 

in this result the value of R-Square shows good fit.  

 Adjusted R-Square value is 0.842 and it means that all the explanatory 

variables can explain 84.2% of variation in sesame production and the remaining 

percentage 15.8% due to other factors that are not included in the model.  
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CHAPTER V 

CONCLUSION 

 

 In this chapter, the findings of sesame production of Myanmar are presented 

with recommendations and further studies. 

 

5.1 Findings and Discussions 

 This thesis was analyzed the sesame production data of Myanmar for 25 years 

from 1995 to 2020. Sesame production of Myanmar has been analyzed in this thesis 

based on five predictions which are sown acreage, harvested acreage, irrigation, 

agricultural loan and quality seeds. Multicollinearity is generally defined as the 

existence of an exact or nearly exact linear relationship between the explanatory 

variables. In this thesis, the issue of multicollinearity and its effects are investigated, 

as well as how to recognize collinearity in any given circumstance. Then, in the event 

of multicollinearity, Principal Component Analysis (PCA) is the most often utilized 

biased regression technique that may be applied. 

 The key objective was to demonstrate how principal components method can 

be used to eliminate multicollinearity problem that may exist when running linear 

regression model. The real application of the techniques was presented in the problem 

of predicting factors influencing sesame production where overall was predicted on 

five variables. The results of linear regression model revealed a large standard error of 

coefficients, the situation which resulted into biasness of the mean estimates of the 

coefficients. The major reason is the violation of ordinarily least square assumption 

that requires the predictors to be independent. The variance inflation factor was used 

as indicator to detect collinearity among predictors. It was observed that VIF values of 

two predictors exceed 10 which indicate presence of multicollinearity problem. Thus 

ignoring this statistical problem can lead to wrong conclusion. 

 After confirming the presence of high relationship between explanatory 

variables, the principal components was utilized to find the possible linear 

combination of variables that can produce large variance without much loss of 

information. The first component contained the variables which were highly related 

namely SOWN and HAR. Similarly, the second component contained variables QTY, 

LOAN and IRRI. These original five set of variables were transformed into two 
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variables (principal components) as a linear combination of related variables, but the 

new variables are independent to each other. 

 The last step was to assess the efficiency of principal component methods in 

solving multicollinearity problem. In order to examine the presence of relationship 

between predictors, dependent variable was regressed on these two principal 

components. The results show that VIF values for each predictor which indicate that 

multicollinearity problem was eliminated. Principal components method helps not 

only in identifying which variables are highly related, but also providing solution for 

improving results of the estimated coefficients. The method transforms a set of 

linearly related variables into artificial variable that are not related with each other. If 

these new variables can be named meaningfully it may be treated as variables for 

further analysis and considered as a remedial solution to multicollinearity. Regardless 

of the strength of principal components in removing multicollinearity, its application 

is limited to a large sample size specifically a minimum of 300 observations (Comrey 

and Lee, 1992). 

In this study, although five factors have been computed, it is obvious that not 

all five factors will be useful in representing the list of five variables. There were two 

eigenvalues (2.121, 1.603) greater than 1.0. The first principal component has largest 

variance that account for 42.4% of the total variance. This PC has comparatively 

largest eigenvalue of 2.1 which is equivalent to the eigenvalues of two variables. The 

second PC has an eigenvalue of 1.6 that accounts to 32.1% of the variability of the 

data. As a rule of thumb, the first two components have eigenvalue greater than one 

and collectively account to 74.5% of variability of the original data set losing only 

25.5% of the information. Therefore only two principal components are extracted and 

retained from five principal components without much loss of information. The 

principal component analysis can frequently be used as a solution to multicollinearity.  

 From the eigenvalues and component number plot, this trend is observed from 

the four components onwards indicating that an eigenvalues of less than 1, and hence 

only two components have been retained. The principal component matrix indicates 

that the component matrix rotated using the Varimax rotation technique which further 

provides the rotated component matrix. 

 The explanatory variables' regression coefficients and standard errors are 

indeterminate if there is perfect collinearity among them. As a result, it is impossible 

to determine sesame's exact production values. The impacts of multicollinearity are 
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diverse. High variance coefficients can make estimates less accurate, multicollinearity 

can make coefficients appear to have the wrong sign and estimates of coefficients 

might vary depending on the sample data used. 

 

5.2 Recommendations 

 PCR is a regression analysis technique that is based on PCA. Regression is 

typically thought of as the result of a set of covariates, which are also known as 

predictors, explanatory variables, or independent variables, based on a traditional 

linear regression model. Principal component coefficient estimators aim to add as 

little bias as possible while significantly reducing estimator variances by removing 

multicollinearities from the least squares estimator. 

 In constructing multiple linear regression equation, the estimators are 

estimated by principal component regression method. Besides that when both 

observations and parameters were the same, a regression model with OLS method 

could not be estimated. This problem was remedied by adding the observations were 

added from 1995 to 2020, the variables were even insignificant at 10 % level. Hence, 

other assumptions are needed to detect. 

 In this thesis, before the multicollinearity is remedied, the adjusted R-Square 

value is 0.807 and it means that all the explanatory variables can explain nearly 81% 

of total variation of the sesame production. And then, after the multicollinearity was 

remedied, adjusted R-Square value is 0.842 and it means that all the explanatory 

variables can explain 84.2% of total variation of the sesame production. It has been 

found that there is a strongly positive relationship between the sesame production of 

Myanmar with sown acreage, harvested acreage, irrigation, agricultural loan and 

quality seeds. 

 Using these additional data, the assumption of multicollinearity was 

discovered. One of the methods for detecting the multicollinearity assumption was the 

VIF and tolerance. The VIF values are greater than 10 and the tolerance values were 

closely to zero. Since these suffered the multicollinearity, Pearson correlation matrix 

were used to know strong correlation between explanatory variables. The model is 

significant and R2 value shows that the model can explain 85.5 % on dependent 

variable Y.   
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5.3 Further Studies 

 This study is analyzed only sesame production of Myanmar but other oilseeds 

production such as groundnut and sunflower can be studied. Moreover, sesame and 

other oilseeds can be compared with that of their production and sown acreage, 

harvested acreage, irrigation, agricultural loan and quality seeds. The correlation 

between these predictor variables and production of sesame in Myanmar can be 

analyzed. The principal objective of this study was solution to multicollinearity when 

fitting linear regression model. Multicollinearity was detected using VIF, tolerance 

and principal component analysis as solution to the problem was presented. The study 

indicated that principal component analysis is one of the appropriate methods of 

solving this matter. Therefore applying principal components produce better 

estimation and prediction than ordinary least squares when predictors are related.  

However, the standardization of the variables could not make in this study. For future 

studies, if variables are measured on scales with widely differing ranges or if the units 

of measurement are not commensurate, the variables should be standardized in the 

principal component analysis. 
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APPENDIX A 

Year 

PRODUCTION  

(in thousand 

ton) 

SOWN  

ACREAGE  

(in 

thousand 

acre) 

HARVESTED  

ACREAGE 

(in thousand 

acre) 

IRRIGATION  

(in thousand 

acre) 

Agricultural 

LOAN  

(in kyat 

millions) 

Use of 

QUALITY  

SEEDS 

(basket) 

1994-1995 299.3 3288 2797 175.97 96.27 1256 

1995-1996 298.8 3153 2234 264.32 850.89 5091 

1996-1997 340.3 2830 2746 160.75 851.11 4464 

1997-1998 258.7 2557 1789 147.76 315.55 1858 

1998-1999 260 2963 1521 285.57 437.71 228 

1999-2000 253.2 3352 2381 293.94 523.18 750 

2000-2001 375.8 3517 3064 232.19 524.83 660 

2001-2002 339 3416 2865 236.94 590.64 68 

2002-2003 405.9 3501 3130 184.98 569.72 306 

2003-2004 436.2 3619 3281 208.18 963.22 230 

2004-2005 473.9 3696 3306 246.46 1241.14 209 

2005-2006 438.5 3306 2934 188.24 1562.13 154 

2006-2007 680 3565 3378 186.08 1945.74 769 

2007-2008 768 3725 3536 194.04 3360.32 398 

2008-2009 840 3880 3685 176.83 3581.21 252 

2009-2010 854 4038 3863 184.48 5665.1 899 

2010-2011 787.4 3918 3754 178.61 10059.67 484 

2011-2012 832.1 3941 3785 160.78 11400.85 2150 

2012-2013 794.6 3838 3688 156.73 11906.29 443 

2013-2014 817.1 4007 3767 209.92 24962.32 825 

2014-2015 801.6 3906 3600 281.61 25205.4 893 

2015-2016 828 4052 3732 285.66 22639.9 1186 

2016-2017 813 4042 3694 335.49 23320.86 1644 

2017-2018 764 3685 3652 260.57 58018.6 2000 

2018-2019 630 3544 3416 300.4 113775.9 2155 

2019-2020 645 3441 3399 330.22 123518.1 1714 

Source: Statistical Yearbooks and Myanmar Agricultural Statistics 

 

  



 

APPENDIX B 

Appendix (B1) 

Statistics 

 Prod Sown Harv Irri Loan Qty 

N Valid 26 26 26 26 26 26 

Missing 0 0 0 0 0 0 

Mean 578.246 3568.46 3192.19 225.6431 17226.4096 1195.62 

Std. Deviation 229.0904 390.979 632.796 56.94184 32623.93278 1246.126 

Minimum 253.2 2557 1521 147.76 96.27 68 

Maximum 854.0 4052 3863 335.49 123518.10 5091 

 

Appendix (B2) 

Correlation Matrix 

 Sown Harv Irri Loan Qty 

Correlation Sown 1.000 .901 .124 .134 -.360 

Harv .901 1.000 -.044 .287 -.216 

Irri .124 -.044 1.000 .554 .094 

Loan .134 .287 .554 1.000 .197 

Qty -.360 -.216 .094 .197 1.000 

 

Appendix (B3) 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1109602.488 5 221920.498 21.923 .000b 

Residual 202458.137 20 10122.907   

Total 1312060.625 25    

a. Dependent Variable: Prod 

b. Predictors: (Constant), Loan, Sown, Qty, Irri, Harv 

 

Appendix (B4) 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

T Sig. 

Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) -1084.612 287.309  -3.775 .001   

Sown .512 .196 .875 2.620 .016 .069 14.441 

Harv .009 .124 .025 .072 .944 .065 15.285 

Irri -1.152 .652 -.286 -1.768 .092 .294 3.402 

Qty .023 .019 .126 1.236 .231 .743 1.346 

Loan .002 .001 .313 1.954 .065 .300 3.330 

a. Dependent Variable: Prod 



 

Appendix (B5) 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .920a .846 .807 100.6127 .790 

a. Predictors: (Constant), Loan, Sown, Qty, Irri, Harv 

b. Dependent Variable: Prod 

 

Appendix (B6) 

Total Variance Explained 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulativ

e % Total 

% of 

Variance 

Cumulative 

% 

1 2.121 42.428 42.428 2.121 42.428 42.428 2.075 41.500 41.500 

2 1.603 32.052 74.479 1.603 32.052 74.479 1.649 32.980 74.479 

3 .817 16.343 90.823       

4 .429 8.574 99.397       

5 .030 .603 100.000       

Extraction Method: Principal Component Analysis. 

 

Appendix (B7) 

Rotated Component Matrixa 

 

Component 

1 2 

Sown .955 .114 

Harv .925 .151 

Qty -.536 .395 

Loan .139 .882 

Irri -.016 .824 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization.a 

a. Rotation converged in 3 iterations. 

 

 

 

 

  



 

Appendix (B8) 

 

Model Summaryb 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate Durbin-Watson 

1 .925a .855 .842 90.1017 .689 

a. Predictors: (Constant), Z2, Z1 

b. Dependent Variable: PROD 

 

Appendix (B9) 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1099309.906 2 549654.953 67.706 .000b 

Residual 186721.098 23 8118.309   

Total 1286031.005 25    

a. Dependent Variable: PROD 

b. Predictors: (Constant), Z2, Z1 

 

Appendix (B10) 

Coefficientsa 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) -817.814 125.103  -6.537 .000   

Z1 .215 .020 .886 10.856 .000 .948 1.055 

Z2 .001 .001 .131 1.608 .121 .948 1.055 

a. Dependent Variable: PROD 

 

 

 

 

 

 

 

 


